All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Isothermal crystallization of poly(vinylidene fluoride) blended with the ionic liquid [Emim]2[Co(SCN)4]: Simultaneous analysis of crystalline phases by infrared spectroscopy and differential scanning calorimetry

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10491350" target="_blank" >RIV/00216208:11320/24:10491350 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pViyboc5bK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pViyboc5bK</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.polymer.2024.126816" target="_blank" >10.1016/j.polymer.2024.126816</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Isothermal crystallization of poly(vinylidene fluoride) blended with the ionic liquid [Emim]2[Co(SCN)4]: Simultaneous analysis of crystalline phases by infrared spectroscopy and differential scanning calorimetry

  • Original language description

    The combination of poly (vinylidene fluoride) (PVDF) with ionic liquids (ILs) is increasingly being studied for the development of smart materials. Together with the functional response provided by the IL, its incorporation into PVDF allows to nucleate specific electroactive phases of the polymer, depending on the processing conditions. Thus, the isothermal crystallization of PVDF incorporating different contents of the magnetic ionic liquid bis(1ethyl-3-methylimidazolium) tetrathiocyanatocobaltate ([Emim]2 [Co(SCN)4]) is reported in this work. Morphological properties of the films were obtained by field emission scanning electronic microscopy (FESEM), and particularly, for the higher contents of IL, segregation was observed through artifacts present on the film surface. This fact has been further confirmed by energy-dispersive x-ray spectroscopy (EDX). The growth of the crystalline phases of PVDF during isothermal crystallization at different temperatures has been analyzed by Fourier transform infrared (FTIR) spectroscopy. Although alpha, beta and gamma crystalline phases were present in all samples, their relative percentages varied greatly with the amount of IL present, demonstrating that [Emim]2 [Co(SCN)4] is a strong inductor of the electroactive (EA) phases of PVDF. By evaluating both FTIR and DSC data, this effect has been ascribed to the higher melting temperatures of the EA structures whose formation is favored at higher crystallization temperatures. The melting temperature (Tm) of the beta phase is higher than that of the alpha phase, whereas Tm for the gamma phase is higher than for alpha and beta phases. Thus, together with the specific functional properties provided by the IL, such as magnetic response and ionic conductivity, the addition of [Emim]2 [Co(SCN)4] strongly influences PVDF&apos;s crystallization kinetics, proving to be a simple and very effective way to nucleate specific phases of PVDF, according also to the specific processing conditions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymer

  • ISSN

    0032-3861

  • e-ISSN

    1873-2291

  • Volume of the periodical

    296

  • Issue of the periodical within the volume

    březen

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

    126816

  • UT code for WoS article

    001205848600001

  • EID of the result in the Scopus database

    2-s2.0-85186121391