Uniqueness of Galilean and Carrollian limits of gravitational theories and application to higher derivative gravity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10491992" target="_blank" >RIV/00216208:11320/24:10491992 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nKXmw3MF~v" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nKXmw3MF~v</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.109.084019" target="_blank" >10.1103/PhysRevD.109.084019</a>
Alternative languages
Result language
angličtina
Original language name
Uniqueness of Galilean and Carrollian limits of gravitational theories and application to higher derivative gravity
Original language description
We show that the seemingly different methods used to derive non-Lorentzian (Galilean and Carrollian) gravitational theories from Lorentzian ones are equivalent. Specifically, the pre-nonrelativistic and the preultralocal parametrizations can be constructed from the gauging of the Galilei and Carroll algebras, respectively. Also, the pre-ultralocal approach of taking the Carrollian limit is equivalent to performing the Arnowitt-Deser-Misner decomposition and then setting the signature of the Lorentzian manifold to zero. We use this uniqueness to write a generic expansion for the curvature tensors and construct Galilean and Carrollian limits of all metric theories of gravity of finite order ranging from the f(R) gravity to a completely generic higher derivative theory, the f(g mu nu, R mu nu sigma rho, del mu) gravity. We present an algorithm for calculation of the nth order of the Galilean and Carrollian expansions that transforms this problem into a constrained optimization problem. We also derive the condition under which a gravitational theory becomes a modification of general relativity in both limits simultaneously.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Volume of the periodical
109
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
084019
UT code for WoS article
001224037100004
EID of the result in the Scopus database
2-s2.0-85189980320