Phenylphosphonic Acid on Rutile TiO2(110): Using Theoretically Predicted O 1s Spectra to Identify the Adsorption Binding Modes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492087" target="_blank" >RIV/00216208:11320/24:10492087 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DDIuIl_EqO" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DDIuIl_EqO</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.4c03690" target="_blank" >10.1021/acs.jpcc.4c03690</a>
Alternative languages
Result language
angličtina
Original language name
Phenylphosphonic Acid on Rutile TiO2(110): Using Theoretically Predicted O 1s Spectra to Identify the Adsorption Binding Modes
Original language description
We have studied the adsorption of phenylphosphonic acid on rutile TiO2(110)-(1 x 1) using high-resolution synchrotron-radiation photoelectron spectroscopy and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS). Upon adsorption at room temperature, we observe a complex O 1s spectrum, a single P 2p multiplet and the disappearance of small polarons in the Ti 2p and valence-band regions. Upon heating to 450-500 K, the O 1s spectrum changes, an additional P 2p species appears, the polaron signals reappear even stronger and NEXAFS indicates a more flat-lying molecule. Using density functional theory (DFT), we have determined the most stable adsorption configurations on the surface. For these configurations, we have calculated the O 1s and P 2p binding-energy positions of all oxygen and phosphorus atoms, including the first three trilayers of the TiO2(110) substrate. In addition, we have used the orientations of the phenyl rings from the DFT structures to calculate the expected polar and azimuthal angular dependencies in carbon K-edge NEXAFS. This allows us to compare our calculated adsorption configurations with the experimental observations. Below 450 K, we find a singly deprotonated bidentate species to be in perfect agreement with the experimental data. Above 500 K, the desorption of water creates oxygen vacancies, and we find a mixed bidentate and rotated-tridentate adsorption structure to be in good agreement with the experimental observations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
<a href="/en/project/LM2023072" target="_blank" >LM2023072: Surface Physics Laboratory – Hydrogen Technology Centre</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
1932-7455
Volume of the periodical
128
Issue of the periodical within the volume
30
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
12735-12753
UT code for WoS article
001273662400001
EID of the result in the Scopus database
2-s2.0-85199108232