All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A NOTE ON C1,α-SMOOTH APPROXIMATION OF LIPSCHITZ FUNCTIONS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492743" target="_blank" >RIV/00216208:11320/24:10492743 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4qcZ-dCNp5" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4qcZ-dCNp5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/proc/16789" target="_blank" >10.1090/proc/16789</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A NOTE ON C1,α-SMOOTH APPROXIMATION OF LIPSCHITZ FUNCTIONS

  • Original language description

    We show that on super -reflexive spaces a Moreau-Yosida type of regularisation by infimal convolution together with a known insertion -type theorem (a variant of Ilmanen&apos;s lemma) easily give an approximation of a Lipschitz function by a C1,alpha-smooth Lipschitz function with the same Lipschitz constant. This is a generalisation of the well-known theorem of J. -M. Lasry and P. -L. Lions from Hilbert spaces. It also gives a new self-contained and probably simpler proof of the Lasry-Lions theorem.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

    1088-6826

  • Volume of the periodical

    152

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    5

  • Pages from-to

    2615-2619

  • UT code for WoS article

    001209446400001

  • EID of the result in the Scopus database

    2-s2.0-85188263136