ASTE-Transformer: Modelling Dependencies in Aspect-Sentiment Triplet Extraction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492890" target="_blank" >RIV/00216208:11320/24:10492890 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2024.findings-emnlp.129" target="_blank" >https://aclanthology.org/2024.findings-emnlp.129</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ASTE-Transformer: Modelling Dependencies in Aspect-Sentiment Triplet Extraction
Original language description
Aspect-Sentiment Triplet Extraction (ASTE) is a recently proposed task of aspect-based sentiment analysis that consists in extracting (aspect phrase, opinion phrase, sentiment polarity) triples from a given sentence. Recent state-of-the-art methods approach this task by first extracting all possible text spans from a given text, then filtering the potential aspect and opinion phrases with a classifier, and finally considering all their pairs with another classifier that additionally assigns sentiment polarity to them. Although several variations of the above scheme have been proposed, the common feature is that the final result is constructed by a sequence of independent classifier decisions. This hinders the exploitation of dependencies between extracted phrases and prevents the use of knowledge about the interrelationships between classifier predictions to improve performance. In this paper, we propose a new ASTE approach consisting of three transformer-inspired layers, which enables the modelling o
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Findings of the Association for Computational Linguistics: EMNLP 2024
ISBN
979-8-89176-168-1
ISSN
—
e-ISSN
—
Number of pages
16
Pages from-to
2324-2339
Publisher name
Association for Computational Linguistics
Place of publication
Kerrville, TX, USA
Event location
Miami, FL, USA
Event date
Nov 12, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—