Enhanced Packed Marker with Entity Information for Aspect Sentiment Triplet Extraction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A38KR6MH4" target="_blank" >RIV/00216208:11320/25:38KR6MH4 - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200546378&doi=10.1145%2f3626772.3657734&partnerID=40&md5=3bee1c871d1a0ec014a3f9e9437fede4" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200546378&doi=10.1145%2f3626772.3657734&partnerID=40&md5=3bee1c871d1a0ec014a3f9e9437fede4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3626772.3657734" target="_blank" >10.1145/3626772.3657734</a>
Alternative languages
Result language
angličtina
Original language name
Enhanced Packed Marker with Entity Information for Aspect Sentiment Triplet Extraction
Original language description
Aspect sentiment triplet extraction (ASTE) is an emerging sentiment analysis task that aims to extract sentiment triplets from review sentences. Each sentiment triplet consists of an aspect, corresponding opinion, and sentiment. Although extensive research has been conducted on the ASTE task, existing methods use the span representations to predict the relationship between spans, failing to consider the interrelation between span pairs. On the other hand, early fusion of entity information is critical for sentiment classification. In this paper, we propose an Enhanced Packed Marker with Entity Information (EPMEI) framework for ASTE task to address the above limitations of the existing works. Specifically, EPMEI consists of entity recognition and sentiment classification models. The entity information is obtained from the entity recognition model first. After that, we insert solid markers with entity information at the input layer of the sentiment classification model to highlight the subject span and improve subject span representation. Furthermore, we introduce a subject-oriented packing strategy, which packs each subject span and all its levitated markers of object spans to model the interrelation between the same-subject span pairs. Extensive experimental results on four ASTE benchmark datasets demonstrate that EPMEI achieves the state-of-the-art baseline. Our code can be found in https://github.com/MKMaS-GUET/EPMEI. © 2024 ACM.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
SIGIR - Proc. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr.
ISBN
979-840070431-4
ISSN
—
e-ISSN
—
Number of pages
11
Pages from-to
619-629
Publisher name
Association for Computing Machinery, Inc
Place of publication
—
Event location
Washington D.C.
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—