All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CorPipe at CRAC 2024: Predicting Zero Mentions from Raw Text

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492906" target="_blank" >RIV/00216208:11320/24:10492906 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2024.crac-1.9/" target="_blank" >https://aclanthology.org/2024.crac-1.9/</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    CorPipe at CRAC 2024: Predicting Zero Mentions from Raw Text

  • Original language description

    We present CorPipe 24, the winning entry to the CRAC 2024 Shared Task on Multilingual Coreference Resolution. In this third iteration of the shared task, a novel objective is to also predict empty nodes needed for zero coreference mentions (while the empty nodes were given on input in previous years). This way, coreference resolution can be performed on raw text. We evaluate two model variants: a two-stage approach (where the empty nodes are predicted first using a pretrained encoder model and then processed together with sentence words by another pretrained model) and a single-stage approach (where a single pretrained encoder model generates empty nodes, coreference mentions, and coreference links jointly). In both settings, CorPipe surpasses other participants by a large margin of 3.9 and 2.8 percent points, respectively. The source code and the trained model are available at https://github.com/ufal/crac2024-corpipe.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX20-16819X" target="_blank" >GX20-16819X: Language Understanding: from Syntax to Discourse</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of The Seventh Workshop on Computational Models of Reference, Anaphora and Coreference

  • ISBN

    979-8-89176-171-1

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    97-106

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Kerrville, TX, USA

  • Event location

    Miami, FL, USA

  • Event date

    Nov 15, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article