All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Leveraging Large Language Models for Building Interpretable Rule-Based Data-to-Text Systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492915" target="_blank" >RIV/00216208:11320/24:10492915 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2024.inlg-main.48/" target="_blank" >https://aclanthology.org/2024.inlg-main.48/</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Leveraging Large Language Models for Building Interpretable Rule-Based Data-to-Text Systems

  • Original language description

    We introduce a simple approach that uses a large language model (LLM) to automatically implement a fully interpretable rule-based data-to-text system in pure Python. Experimental evaluation on the WebNLG dataset showed that such a constructed system produces text of better quality (according to the BLEU and BLEURT metrics) than the same LLM prompted to directly produce outputs, and produces fewer hallucinations than a BART language model fine-tuned on the same data. Furthermore, at runtime, the approach generates text in a fraction of the processing time required by neural approaches, using only a single CPU.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 17th International Natural Language Generation Conference

  • ISBN

    979-8-89176-122-3

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    622-630

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Kerrville, TX, USA

  • Event location

    Tokyo, Japan

  • Event date

    Sep 23, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article