Extension of unbounded uniformly continuous functions and pseudometrics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492945" target="_blank" >RIV/00216208:11320/24:10492945 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Xe.6McvG1P" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Xe.6McvG1P</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2024.108959" target="_blank" >10.1016/j.topol.2024.108959</a>
Alternative languages
Result language
angličtina
Original language name
Extension of unbounded uniformly continuous functions and pseudometrics
Original language description
In this paper we aim to characterize uniformly continuous real functions and pseudometrics on metric spaces, having uniformly continuous extension. For functions we use a very similar approach as McShane in [7] using moduli of continuity. By doing that we obtain an explicit formula for the extension. We also show that our characterization for functions is equivalent to one proposed in [8] for uniform spaces. We then show that a similar approach can be done for uniformly continuous pseudometrics. To do so we use the notion of chainable metric spaces and intrinsic metrics defined in [9]. A somewhat similar approach has been studied in [6] for normed linear spaces. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology and its Applications
ISSN
0166-8641
e-ISSN
1879-3207
Volume of the periodical
353
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
108959
UT code for WoS article
001255621100001
EID of the result in the Scopus database
2-s2.0-85195028587