Extensions of vector-valued Baire one functions with preservation of points of continuity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00459546" target="_blank" >RIV/67985840:_____/16:00459546 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.04.052" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2016.04.052</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.04.052" target="_blank" >10.1016/j.jmaa.2016.04.052</a>
Alternative languages
Result language
angličtina
Original language name
Extensions of vector-valued Baire one functions with preservation of points of continuity
Original language description
We prove an extension theorem (with non-tangential limits) for vector-valued Baire one functions. Moreover, at every point where the function is continuous (or bounded), the continuity (or boundedness) is preserved. More precisely: Let H be a closed subset of a metric space X and let Z be a normed vector space. Let ... be a Baire one function. We show that there is a continuous function ... such that, for every ..., the non-tangential limit of g at a equals f(a)f(a) and, moreover, if f is continuous at ... (respectively bounded in a neighborhood of ...) then the extension ... is continuous at a (respectively bounded in a neighborhood of a). We also prove a result on pointwise approximation of vector-valued Baire one functions by a sequence of locally Lipschitz functions that converges “uniformly (or, “continuously) at points where the approximated function is continuous.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-07880S" target="_blank" >GA14-07880S: Methods of function theory and Banach algebras in operator theory V.</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
442
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
138-148
UT code for WoS article
000376837100008
EID of the result in the Scopus database
2-s2.0-84964577841