All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

WEAK LIMIT OF HOMEOMORPHISMS IN W1,n-1 - INVERTIBILITY AND LOWER SEMICONTINUITY OF ENERGY

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492960" target="_blank" >RIV/00216208:11320/24:10492960 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=H~VshqxXXQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=H~VshqxXXQ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/cocv/2024006" target="_blank" >10.1051/cocv/2024006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    WEAK LIMIT OF HOMEOMORPHISMS IN W1,n-1 - INVERTIBILITY AND LOWER SEMICONTINUITY OF ENERGY

  • Original language description

    Let Omega, Omega&apos; subset of R-n be bounded domains and let f(m): Omega -&gt; Omega&apos; be a sequence of homeomorphisms with positive Jacobians J(fm) &gt; 0 a.e. and prescribed Dirichlet boundary data. Let all f(m) satisfy the Lusin (N) condition and sup(m) integral Omega(vertical bar Df(m)vertical bar(n-1) + A(vertical bar cof D f(m)vertical bar) + phi(J(f))) &lt; infinity, where A and phi are positive convex functions. Let f be a weak limit of f(m) in W-1,W-n-1. Provided certain growth behaviour of A and phi, we show that f satisfies the (INV) condition of Conti and De Lellis, the Lusin (N) condition, and polyconvex energies are lower semicontinuous.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA21-01976S" target="_blank" >GA21-01976S: Geometric and Harmonic Analysis 2</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ESAIM - Control, Optimisation and Calculus of Variations

  • ISSN

    1292-8119

  • e-ISSN

    1262-3377

  • Volume of the periodical

    30

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    32

  • Pages from-to

    37

  • UT code for WoS article

    001206547000002

  • EID of the result in the Scopus database

    2-s2.0-85191655362