Almost Linear Size Edit Distance Sketch
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492979" target="_blank" >RIV/00216208:11320/24:10492979 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1145/3618260.3649783" target="_blank" >https://doi.org/10.1145/3618260.3649783</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3618260.3649783" target="_blank" >10.1145/3618260.3649783</a>
Alternative languages
Result language
angličtina
Original language name
Almost Linear Size Edit Distance Sketch
Original language description
We design an almost linear-size sketching scheme for computing edit distance up to a given threshold k. The scheme consists of two algorithms, a sketching algorithm and a recovery algorithm. The sketching algorithm depends on the parameter k and takes as input a string x and a public random string rho and computes a sketch sk(rho)(x;k), which is a compressed version of x. The recovery algorithm is given two sketches sk(rho)(x;k) and sk(rho)(y;k) as well as the public random string rho used to create the two sketches, and (with high probability) if the edit distance ED(x,y) between x and y is at most k, will output ED(x,y) together with an optimal sequence of edit operations that transforms x to y, and if ED(x,y) > k will output large. The size of the sketch output by the sketching algorithm on input x is k2(O(root log(n)loglog(n))) (where n is an upper bound on length of x). The sketching and recovery algorithms both run in time polynomial in n. The dependence of sketch size on k is information theoretically optimal and improves over the quadratic dependence on k in schemes of Kociumaka, Porat and Starikovskaya (FOCS2021), and Bhattacharya and Koucky (STOC2023).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Annual ACM Symposium on Theory of Computing
ISBN
979-8-4007-0383-6
ISSN
0737-8017
e-ISSN
—
Number of pages
12
Pages from-to
956-967
Publisher name
Association for Computing Machinery
Place of publication
New York, N.Y.
Event location
Vancouver
Event date
Jun 24, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001254099900087