Constant factor approximations to edit distance on far input pairs in nearly linear time
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422309" target="_blank" >RIV/00216208:11320/20:10422309 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1145/3357713.3384307" target="_blank" >https://doi.org/10.1145/3357713.3384307</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3357713.3384307" target="_blank" >10.1145/3357713.3384307</a>
Alternative languages
Result language
angličtina
Original language name
Constant factor approximations to edit distance on far input pairs in nearly linear time
Original language description
For any T >= 1, there are constants R=R(T) >= 1 and ζ=ζ(T)>0 and a randomized algorithm that takes as input an integer n and two strings x,y of length at most n, and runs in time O(n1+1/T) and outputs an upper bound U on the edit distance of edit(x,y) that with high probability, satisfies U <= R(edit(x,y)+n1-ζ). In particular, on any input with edit(x,y) >= n1-ζ the algorithm outputs a constant factor approximation with high probability. A similar result has been proven independently by Brakensiek and Rubinstein (this proceedings).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
STOC 2020: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing
ISBN
978-1-4503-6979-4
ISSN
0737-8017
e-ISSN
—
Number of pages
14
Pages from-to
699-712
Publisher name
ACM - Association for Computing Machinery.
Place of publication
USA
Event location
USA
Event date
Jun 22, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000614624700056