All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Natural Density of Sets Related to Generalized Fibonacci Numbers of Order r

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018556" target="_blank" >RIV/62690094:18470/21:50018556 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2075-1680/10/3/144" target="_blank" >https://www.mdpi.com/2075-1680/10/3/144</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/axioms10030144" target="_blank" >10.3390/axioms10030144</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Natural Density of Sets Related to Generalized Fibonacci Numbers of Order r

  • Original language description

    For r &gt;= 2 and a &gt;= 1 integers, let (t(n)((r,a)))(n &gt;= 1) be the sequence of the (r,a)-generalized Fibonacci numbers which is defined by the recurrence t(n)((r,a))=t(n-1)((r,a))+ . . .+t(n-r)((r,a)) for n&gt;r, with initial values t(i)((r,a))=1, for all i is an element of[1,r-1] and t(r)((r,a))=a. In this paper, we shall prove (in particular) that, for any given r &gt;= 2, there exists a positive proportion of positive integers which can not be written as t(n)((r,a)) for any (n,a)is an element of Z(&gt;= r+2)xZ(&gt;1).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Axioms

  • ISSN

    2075-1680

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    6

  • Pages from-to

    "Article Number: 144"

  • UT code for WoS article

    000699084600001

  • EID of the result in the Scopus database

    2-s2.0-85113402613