UNCONDITIONAL STRUCTURES OF TRANSLATES FOR L-p(R-d)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00237765" target="_blank" >RIV/68407700:21230/14:00237765 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11856-014-1084-1" target="_blank" >http://dx.doi.org/10.1007/s11856-014-1084-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-014-1084-1" target="_blank" >10.1007/s11856-014-1084-1</a>
Alternative languages
Result language
angličtina
Original language name
UNCONDITIONAL STRUCTURES OF TRANSLATES FOR L-p(R-d)
Original language description
We prove that a sequence (integral(i))(i=1)(8) of translates of a fixed integral is an element of L-p(R) can-not be an unconditional basis of L-p(R) for any 1 <= p < infinity. In contrast to this, for every 2 < p < infinity, d is an element of N and unbounded sequence (lambda(n))(n is an element of N) subset of R-d we establish the existence of a function f is an element of L-p(R-d) and sequence (g(n)*)(n is an element of N) subset of L-p*(R-d) such that (T-lambda n f, g(n)*)(n is an element of N) formsan unconditional Schauder frame for L-p(R-d). In particular, there exists a Schauder frame of integer translates for L-p(R) if (and only if) 2 < p < infinity.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ISRAEL JOURNAL OF MATHEMATICS
ISSN
0021-2172
e-ISSN
—
Volume of the periodical
203
Issue of the periodical within the volume
1
Country of publishing house
IL - THE STATE OF ISRAEL
Number of pages
21
Pages from-to
189-209
UT code for WoS article
000344548700009
EID of the result in the Scopus database
—