All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Fibonacci Numbers of Order r Which Are Expressible as Sum of Consecutive Factorial Numbers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018119" target="_blank" >RIV/62690094:18470/21:50018119 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/9/9/962" target="_blank" >https://www.mdpi.com/2227-7390/9/9/962</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math9090962" target="_blank" >10.3390/math9090962</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Fibonacci Numbers of Order r Which Are Expressible as Sum of Consecutive Factorial Numbers

  • Original language description

    Let (t(n)((r)))(n &gt;= 0) be the sequence of the generalized Fibonacci number of order r, which is defined by the recurrence t(n)((r)) = t(n-1)((r)) +... + t(n-r)((r)) for n &gt;= r, with initial values t(0)((r)) = 0 and t(i)((r)) = 1, for all 1 &lt;= i &lt;= r. In 2002, Grossman and Luca searched for terms of the sequence (t(n)((2)))(n), which are expressible as a sum of factorials. In this paper, we continue this program by proving that, for any l &gt;= 1, there exists an effectively computable constant C = C(l) &gt; 0 (only depending on l), such that, if (m, n, r) is a solution of t(m)((r)) = n! + (n + 1)! +... + (n + l)!, with r even, then max{m, n, r} &lt; C. As an application, we solve the previous equation for all 1 &lt;= l &lt;= 5.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    9

  • Pages from-to

    "Article Number: 962"

  • UT code for WoS article

    000650581400001

  • EID of the result in the Scopus database

    2-s2.0-85105321726