On Fibonacci Numbers of Order r Which Are Expressible as Sum of Consecutive Factorial Numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018119" target="_blank" >RIV/62690094:18470/21:50018119 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/9/9/962" target="_blank" >https://www.mdpi.com/2227-7390/9/9/962</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math9090962" target="_blank" >10.3390/math9090962</a>
Alternative languages
Result language
angličtina
Original language name
On Fibonacci Numbers of Order r Which Are Expressible as Sum of Consecutive Factorial Numbers
Original language description
Let (t(n)((r)))(n >= 0) be the sequence of the generalized Fibonacci number of order r, which is defined by the recurrence t(n)((r)) = t(n-1)((r)) +... + t(n-r)((r)) for n >= r, with initial values t(0)((r)) = 0 and t(i)((r)) = 1, for all 1 <= i <= r. In 2002, Grossman and Luca searched for terms of the sequence (t(n)((2)))(n), which are expressible as a sum of factorials. In this paper, we continue this program by proving that, for any l >= 1, there exists an effectively computable constant C = C(l) > 0 (only depending on l), such that, if (m, n, r) is a solution of t(m)((r)) = n! + (n + 1)! +... + (n + l)!, with r even, then max{m, n, r} < C. As an application, we solve the previous equation for all 1 <= l <= 5.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
9
Country of publishing house
CH - SWITZERLAND
Number of pages
9
Pages from-to
"Article Number: 962"
UT code for WoS article
000650581400001
EID of the result in the Scopus database
2-s2.0-85105321726