Packing coloring of hypercubes with extended Hamming codes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493097" target="_blank" >RIV/00216208:11320/24:10493097 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KZWuynYwkt" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KZWuynYwkt</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2024.07.048" target="_blank" >10.1016/j.dam.2024.07.048</a>
Alternative languages
Result language
angličtina
Original language name
Packing coloring of hypercubes with extended Hamming codes
Original language description
A packing k-coloring of a graph G is a mapping assigning a positive integer (a color) from the set {1,. .. , k} to every vertex of G such that every two distinct vertices of color c are at distance at least c + 1. The minimum value k such that G admits a packing k-coloring is called the packing chromatic number of G. In this paper, we continue the study of the packing chromatic number of hypercubes and we improve the upper bounds reported by Torres and Valencia-Pabon (2015) by presenting recursive constructions of subsets of distant vertices making use of the properties of the extended Hamming codes. We also answer in negative a question on the packing chromatic number of Cartesian products raised by Brešar et al. (2007).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-15272S" target="_blank" >GA22-15272S: Principles of combinatorial generation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
1872-6771
Volume of the periodical
359
Issue of the periodical within the volume
prosinec
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
269-277
UT code for WoS article
001299282400001
EID of the result in the Scopus database
2-s2.0-85201370920