A Brooks-like result for graph powers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00139278" target="_blank" >RIV/00216224:14330/24:00139278 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.ejc.2023.103822" target="_blank" >https://doi.org/10.1016/j.ejc.2023.103822</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2023.103822" target="_blank" >10.1016/j.ejc.2023.103822</a>
Alternative languages
Result language
angličtina
Original language name
A Brooks-like result for graph powers
Original language description
Coloring a graph G consists in finding an assignment of colors c : V(G) -> {1, ... , p} such that any pair of adjacent vertices receives different colors. The minimum integer p such that a coloring exists is called the chromatic number of G, denoted by chi(G). We investigate the chromatic number of powers of graphs, i.e. the graphs obtained from a graph G by adding an edge between every pair of vertices at distance at most k. For k = 1, Brooks' theorem states that every connected graph of maximum degree increment 3 except the clique on increment + 1 vertices can be colored using increment colors (i.e. one color less than the naive upper bound). For k 2, a similar result holds: except for Moore graphs, the naive upper bound can be lowered by 2. We prove that for k 3 and for every increment , we can actually spare k-2 colors, except for a finite number of graphs. We then improve this value to Theta(( increment - 1)k12). (c) 2023 Elsevier Ltd. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
117
Issue of the periodical within the volume
103822
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
1-8
UT code for WoS article
001161306900001
EID of the result in the Scopus database
2-s2.0-85171531760