All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parameterized algorithms for block-structured integer programs with large entries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493513" target="_blank" >RIV/00216208:11320/24:10493513 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1137/1.9781611977912.29" target="_blank" >https://doi.org/10.1137/1.9781611977912.29</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/1.9781611977912.29" target="_blank" >10.1137/1.9781611977912.29</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parameterized algorithms for block-structured integer programs with large entries

  • Original language description

    We study two classic variants of block-structured integer programming. Two-stage stochastic programs are integer programs of the form {Aix + Diyi = bi for all i = 1, ..., n}, where Ai and Di are bounded-size matrices. Intuitively, this form corresponds to the setting when after setting a small set of global variables x, the program can be decomposed into a possibly large number of bounded-size subprograms. On the other hand, n-fold programs are integer programs of the form (Equation presented) Ciyi = a and Diyi = bi for all i = 1, ..., n}, where again Ci and Di are bounded-size matrices. This form is natural for knapsack-like problems, where we have a large number of variables partitioned into small-size groups, each group needs to obey some set of local constraints, and there are only a few global constraints that link together all the variables. A line of recent work established that the optimization problem for both two-stage stochastic programs and n-fold programs is fixed-parameter tractable when parameterized by the dimensions of relevant matrices Ai, Ci, Di and by the maximum absolute value of any entry appearing in the constraint matrix. A fundamental tool used in these advances is the notion of the Graver basis of a matrix, and this tool heavily relies on the assumption that all the entries of the constraint matrix are bounded. In this work, we prove that the parameterized tractability results for two-stage stochastic and n-fold programs persist even when one allows large entries in the global part of the program. More precisely, we prove the following: In this work, we prove that the parameterized tractability results for two-stage stochastic and n-fold programs persist even when one allows large entries in the global part of the program. More precisely, we prove the following: . The feasibility problem for two-stage stochastic programs is fixed-parameter tractable when parameterized by the dimensions of matrices Ai, Di and by the maximum absolute value of the entries of matrices Di. That is, we allow matrices Ai to have arbitrarily large entries. . The linear optimization problem for n-fold integer programs that are uniform - all matrices Ci are equal - is fixed-parameter tractable when parameterized by the dimensions of matrices Ci and Di and by the maximum absolute value of the entries of matrices Di. That is, we require that Ci = C for all i = 1, ..., n, but we allow C to have arbitrarily large entries. In the second result, the uniformity assumption is necessary; otherwise the problem is NP-hard already when the parameters take constant values. Both our algorithms are weakly polynomial: the running time is measured in the total bitsize of the input. In both results, we depart from the approach that relies purely on Graver bases. Instead, for two-stage stochastic programs, we devise a reduction to integer programming with a bounded number of variables using new insights about the combinatorics of integer cones. For n-fold programs, we reduce a given n-fold program to an exponential-size program with bounded right-hand sides, which we consequently solve using a reduction to mixed integer programming with a bounded number of integral variables.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-22997S" target="_blank" >GA22-22997S: Efficient and Realistic Models in Computational Social Choice</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

  • ISBN

    978-1-61197-791-2

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    740-751

  • Publisher name

    SIAM

  • Place of publication

    USA

  • Event location

    Alexandria, VA, USA

  • Event date

    Jan 7, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article