Notes on sublocales and dissolution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493602" target="_blank" >RIV/00216208:11320/24:10493602 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LK0keaULhq" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LK0keaULhq</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2989/16073606.2024.2351184" target="_blank" >10.2989/16073606.2024.2351184</a>
Alternative languages
Result language
angličtina
Original language name
Notes on sublocales and dissolution
Original language description
The dissolution (introduced by Isbell in [3], discussed by Johnstone in [5] and later exploited by Plewe in [12, 13]) is here viewed as the relation of the geometry of L with that of the more dispersed T(L) = S(L)op mediated by the natural embedding and its adjoint localic map gamma L: T(L) -> L. The associated image-preimage adjunction (gamma L)-1 [-] & dashv; gamma L [-] between the frames T(L) and TT(L) is shown to coincide with the adjunction cT(L) & dashv; gamma T(L) of the second step of the assembly (tower) of L. This helps to explain the role of T(L) = S(L)op as an "almost discrete lift" (sometimes used as a sort of model of the classical discrete lift DL -> L) as a dispersion going halfway to Booleanness. Consequent use of the concrete sublocales technique simplifies the reasoning. We illustrate it on the celebrated Plewe's theorem on ultranormality (and ultraparacompactness) of S(L) which becomes (we hope) substantially more transparent.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quaestiones Mathematicae
ISSN
1607-3606
e-ISSN
1727-933X
Volume of the periodical
47
Issue of the periodical within the volume
10
Country of publishing house
ZA - SOUTH AFRICA
Number of pages
15
Pages from-to
2053-2067
UT code for WoS article
001223899200001
EID of the result in the Scopus database
2-s2.0-85193051765