All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Counting Vanishing Matrix-Vector Products

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10494667" target="_blank" >RIV/00216208:11320/24:10494667 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-981-97-0566-5_24" target="_blank" >https://doi.org/10.1007/978-981-97-0566-5_24</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-97-0566-5_24" target="_blank" >10.1007/978-981-97-0566-5_24</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Counting Vanishing Matrix-Vector Products

  • Original language description

    Consider the following parameterized counting variation of the classic subset sum problem, which arises notably in the context of higher homotopy groups of topological spaces: Let v is an element of Q(d) be a rational vector, (T-1, T-2... T-m) a list of d x d rational matrices, S is an element of Q(hxd) a rational matrix not necessarily square and k a parameter. The goal is to compute the number of ways one can choose k matrices T-i1, T-i2,..., T-ik from the list such that STik center dot center dot center dot T(i1)v = 0 is an element of Q(h). In this paper, we show that this problem is #W[2]-hard for parameter k. As a consequence, computing the k-th homotopy group of a d-dimensional 1-connected topological space for d &gt; 3 is #W[2]-hard for parameter k. We also discuss a decision version of the problem and its several modifications for which we show W[1]/W[2]-hardness. This is in contrast to the parameterized k-sum problem, which is only W[1]-hard (Abboud-Lewi-Williams, ESA&apos;14). In addition, we show that the decision version of the problem without parameter is an undecidable problem, and we give a fixed-parameter tractable algorithm for matrices of bounded size over finite fields, parameterized by the matrix dimensions and the order of the field.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2024

  • ISBN

    978-981-9705-65-8

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    15

  • Pages from-to

    335-349

  • Publisher name

    SPRINGER-VERLAG SINGAPORE PTE LTD

  • Place of publication

    SINGAPORE

  • Event location

    Kanazawa

  • Event date

    Mar 18, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001207267500024