Counting Vanishing Matrix-Vector Products
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10494667" target="_blank" >RIV/00216208:11320/24:10494667 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-981-97-0566-5_24" target="_blank" >https://doi.org/10.1007/978-981-97-0566-5_24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-97-0566-5_24" target="_blank" >10.1007/978-981-97-0566-5_24</a>
Alternative languages
Result language
angličtina
Original language name
Counting Vanishing Matrix-Vector Products
Original language description
Consider the following parameterized counting variation of the classic subset sum problem, which arises notably in the context of higher homotopy groups of topological spaces: Let v is an element of Q(d) be a rational vector, (T-1, T-2... T-m) a list of d x d rational matrices, S is an element of Q(hxd) a rational matrix not necessarily square and k a parameter. The goal is to compute the number of ways one can choose k matrices T-i1, T-i2,..., T-ik from the list such that STik center dot center dot center dot T(i1)v = 0 is an element of Q(h). In this paper, we show that this problem is #W[2]-hard for parameter k. As a consequence, computing the k-th homotopy group of a d-dimensional 1-connected topological space for d > 3 is #W[2]-hard for parameter k. We also discuss a decision version of the problem and its several modifications for which we show W[1]/W[2]-hardness. This is in contrast to the parameterized k-sum problem, which is only W[1]-hard (Abboud-Lewi-Williams, ESA'14). In addition, we show that the decision version of the problem without parameter is an undecidable problem, and we give a fixed-parameter tractable algorithm for matrices of bounded size over finite fields, parameterized by the matrix dimensions and the order of the field.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2024
ISBN
978-981-9705-65-8
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
15
Pages from-to
335-349
Publisher name
SPRINGER-VERLAG SINGAPORE PTE LTD
Place of publication
SINGAPORE
Event location
Kanazawa
Event date
Mar 18, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001207267500024