All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Counting vanishing matrix-vector products

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10494671" target="_blank" >RIV/00216208:11320/24:10494671 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AHc9TfA1Aa" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AHc9TfA1Aa</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tcs.2024.114877" target="_blank" >10.1016/j.tcs.2024.114877</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Counting vanishing matrix-vector products

  • Original language description

    Consider the following parameterized counting variation of the classic subset sum problem, which arises notably in the context of higher homotopy groups of topological spaces: Let v is an element of Q(d) be a rational vector, (T-1,T-2 &amp; mldr;T-m) a list of dxd rational matrices, S is an element of Q(hxd) a rational matrix not necessarily square and k a parameter. The goal is to compute the number of ways one can choose k matrices T-i1,T-i2,&amp; mldr;,T-ik from the list such that STik &amp; ctdot;T(i1)v=0 is an element of Q(h).&lt;br /&gt; In this paper, we show that this problem is #W[2]-hard for parameter k. As a consequence, computing the k-th homotopy group of a d-dimensional 1-connected topological space for d&gt;3 is #W[2]-hard for parameter k. We also discuss a decision version of the problem and its several modifications for which we show W[1]/W[2]-hardness. This is in contrast to the parameterized k-sum problem, which is only W[1]-hard (Abboud-Lewi-Williams, ESA&apos;14). In addition, we show that the decision version of the problem without parameter is an undecidable problem, and we give a fixed-parameter tractable algorithm for matrices of bounded size over finite fields, parameterized the matrix dimensions and the order of the field.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

    1879-2294

  • Volume of the periodical

    1021

  • Issue of the periodical within the volume

    neuveden

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    114877

  • UT code for WoS article

    001319119600001

  • EID of the result in the Scopus database

    2-s2.0-85203867305