GUMsley: Evaluating Entity Salience in Summarization for 12 English Genres
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A3PWYAZBC" target="_blank" >RIV/00216208:11320/25:3PWYAZBC - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189928757&partnerID=40&md5=09c98e0dbcecc09b86d0918f176ebd49" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189928757&partnerID=40&md5=09c98e0dbcecc09b86d0918f176ebd49</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
GUMsley: Evaluating Entity Salience in Summarization for 12 English Genres
Original language description
As NLP models become increasingly capable of understanding documents in terms of coherent entities rather than strings, obtaining the most salient entities for each document is not only an important end task in itself but also vital for Information Retrieval (IR) and other downstream applications such as controllable summarization. In this paper, we present and evaluate GUMsley, the first entity salience dataset covering all named and non-named salient entities for 12 genres of English text, aligned with entity types, Wikification links and full coreference resolution annotations. We promote a strict definition of salience using human summaries and demonstrate high inter-annotator agreement for salience based on whether a source entity is mentioned in the summary. Our evaluation shows poor performance by pre-trained SOTA summarization models and zero-shot LLM prompting in capturing salient entities in generated summaries. We also show that predicting or providing salient entities to several model architectures enhances performance and helps derive higher-quality summaries by alleviating the entity hallucination problem in existing abstractive summarization. © 2024 Association for Computational Linguistics.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
EACL - Conf. European Chapter Assoc. Comput. Linguist., Proc. Conf.
ISBN
979-889176088-2
ISSN
—
e-ISSN
—
Number of pages
14
Pages from-to
2575-2588
Publisher name
Association for Computational Linguistics (ACL)
Place of publication
—
Event location
St. Julian's
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—