All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Domain-Weighted Batch Sampling for Neural Dependency Parsing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A3RG8BT5L" target="_blank" >RIV/00216208:11320/25:3RG8BT5L - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2024.mwe-1.24" target="_blank" >https://aclanthology.org/2024.mwe-1.24</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Domain-Weighted Batch Sampling for Neural Dependency Parsing

  • Original language description

    In neural dependency parsing, as well as in the broader field of NLP, domain adaptation remains a challenging problem. When adapting a parser to a target domain, there is a fundamental tension between the need to make use of out-of-domain data and the need to ensure that syntactic characteristic of the target domain are learned. In this work we explore a way to balance these two competing concerns, namely using domain-weighted batch sampling, which allows us to use all available training data, while controlling the probability of sampling in- and out-of-domain data when constructing training batches. We conduct experiments using ten natural language domains and find that domain-weighted batch sampling yields substantial performance improvements in all ten domains compared to a baseline of conventional randomized batch sampling.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Joint Workshop on Multiword Expressions and Universal Dependencies (MWE-UD) @ LREC-COLING 2024

  • ISBN

    978-2-493-81420-3

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    198-206

  • Publisher name

    ELRA and ICCL

  • Place of publication

  • Event location

    Torino, Italia

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article