Automation-Driven Dataset Preparation for Continuous Czech Sign Language Recognition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A78XTM3FI" target="_blank" >RIV/00216208:11320/25:78XTM3FI - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/10789742/" target="_blank" >https://ieeexplore.ieee.org/document/10789742/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ME61309.2024.10789742" target="_blank" >10.1109/ME61309.2024.10789742</a>
Alternative languages
Result language
angličtina
Original language name
Automation-Driven Dataset Preparation for Continuous Czech Sign Language Recognition
Original language description
This paper presents an automation-driven solution for preparing a continuous Czech Sign Language dataset, addressing the lack of resources in this area. Manual processing of daily sign language news recordings would be extremely time-consuming, as the videos vary in quality, use different overlays, and have no captions. To streamline this process, we use the Structural Similarity Index Measure (SSIM) to compare key frames and extract relevant parts of the recording, such as weather forecast segments. Automatic speech recognition (ASR) then processes the accompanying audio and generates textual transcriptions of the spoken content. The outcome is the highly automated preparation pipeline and the dataset containing 4699 annotated videos of weather forecast news in Czech Sign Language providing a foundation for future research in sign language recognition.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2024 21st International Conference on Mechatronics - Mechatronika (ME)
ISBN
9798350394900
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
1-5
Publisher name
IEEE
Place of publication
—
Event location
Brno, Czech Republic
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—