What do Transformers Know about Government?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A7NGESYMC" target="_blank" >RIV/00216208:11320/25:7NGESYMC - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195929276&partnerID=40&md5=d86814ece2be684d5f2c316f544220cb" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195929276&partnerID=40&md5=d86814ece2be684d5f2c316f544220cb</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
What do Transformers Know about Government?
Original language description
This paper investigates what insights about linguistic features and what knowledge about the structure of natural language can be obtained from the encodings in transformer language models. In particular, we explore how BERT encodes the government relation between constituents in a sentence. We use several probing classifiers, and data from two morphologically rich languages. Our experiments show that information about government is encoded across all transformer layers, but predominantly in the early layers of the model. We find that, for both languages, a small number of attention heads encode enough information about the government relations to enable us to train a classifier capable of discovering new, previously unknown types of government, never seen in the training data. Currently, data is lacking for the research community working on grammatical constructions, and government in particular. We release the Government Bank-a dataset defining the government relations for thousands of lemmas in the languages in our experiments.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.
ISBN
978-249381410-4
ISSN
—
e-ISSN
—
Number of pages
14
Pages from-to
17459-17472
Publisher name
European Language Resources Association (ELRA)
Place of publication
—
Event location
Torino, Italia
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—