Aspect-Based Sentiment Analysis for Slovene Texts: Models, Lexicons, and Embeddings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A9ELXC6VL" target="_blank" >RIV/00216208:11320/25:9ELXC6VL - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85192262138&doi=10.1109%2fIATMSI60426.2024.10503382&partnerID=40&md5=7b9e06c82075cf4b53ca0fe16b9d5aa7" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85192262138&doi=10.1109%2fIATMSI60426.2024.10503382&partnerID=40&md5=7b9e06c82075cf4b53ca0fe16b9d5aa7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IATMSI60426.2024.10503382" target="_blank" >10.1109/IATMSI60426.2024.10503382</a>
Alternative languages
Result language
angličtina
Original language name
Aspect-Based Sentiment Analysis for Slovene Texts: Models, Lexicons, and Embeddings
Original language description
When performing sentiment analysis on texts mentioning multiple entities, the sentiment towards each of them is not necessarily the same, and it is essential to determine what sentiment applies to each entity separately. In this paper, we study aspect-based sentiment analysis approaches applied to texts in Slovene. We implement three models. In the first model, we use a sentiment lexicon to determine the sentiment of words close to an entity in the same sentence and document and use those as features for a random forest classifier. In the second model, we add a neural model for dependency parsing to the pipeline and construct features based on words close in a sentence's dependency tree instead of sequentially. The third model uses BERT embeddings with a neural classifier to construct embeddings. We evaluate the approaches on the SentiCoref 1.0 corpus of Slovene texts for aspect-based sentiment analysis. © 2024 IEEE.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IEEE Int. Conf. Interdiscip. Approaches Technol. Manag. Soc. Innov., IATMSI
ISBN
979-835036052-3
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
1-6
Publisher name
Institute of Electrical and Electronics Engineers Inc.
Place of publication
—
Event location
Gwalior
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—