All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Aspect-Based Sentiment Analysis for Slovene Texts: Models, Lexicons, and Embeddings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A9ELXC6VL" target="_blank" >RIV/00216208:11320/25:9ELXC6VL - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85192262138&doi=10.1109%2fIATMSI60426.2024.10503382&partnerID=40&md5=7b9e06c82075cf4b53ca0fe16b9d5aa7" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85192262138&doi=10.1109%2fIATMSI60426.2024.10503382&partnerID=40&md5=7b9e06c82075cf4b53ca0fe16b9d5aa7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IATMSI60426.2024.10503382" target="_blank" >10.1109/IATMSI60426.2024.10503382</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Aspect-Based Sentiment Analysis for Slovene Texts: Models, Lexicons, and Embeddings

  • Original language description

    When performing sentiment analysis on texts mentioning multiple entities, the sentiment towards each of them is not necessarily the same, and it is essential to determine what sentiment applies to each entity separately. In this paper, we study aspect-based sentiment analysis approaches applied to texts in Slovene. We implement three models. In the first model, we use a sentiment lexicon to determine the sentiment of words close to an entity in the same sentence and document and use those as features for a random forest classifier. In the second model, we add a neural model for dependency parsing to the pipeline and construct features based on words close in a sentence's dependency tree instead of sequentially. The third model uses BERT embeddings with a neural classifier to construct embeddings. We evaluate the approaches on the SentiCoref 1.0 corpus of Slovene texts for aspect-based sentiment analysis. © 2024 IEEE.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IEEE Int. Conf. Interdiscip. Approaches Technol. Manag. Soc. Innov., IATMSI

  • ISBN

    979-835036052-3

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1-6

  • Publisher name

    Institute of Electrical and Electronics Engineers Inc.

  • Place of publication

  • Event location

    Gwalior

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article