All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

TIGQA: An Expert-Annotated Question-Answering Dataset in Tigrinya

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ACLDRI235" target="_blank" >RIV/00216208:11320/25:CLDRI235 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195903895&partnerID=40&md5=1c44e30f7d74fd7be71bf73d8e6341e0" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195903895&partnerID=40&md5=1c44e30f7d74fd7be71bf73d8e6341e0</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    TIGQA: An Expert-Annotated Question-Answering Dataset in Tigrinya

  • Original language description

    The absence of explicitly tailored, accessible annotated datasets for educational purposes presents a notable obstacle for NLP tasks in languages with limited resources. This study initially explores the feasibility of using machine translation (MT) to convert an existing dataset into a Tigrinya dataset in SQuAD format. As a result, we present TIGQA, an expert-annotated dataset containing 2,685 question-answer pairs covering 122 diverse topics such as climate, water, and traffic. These pairs are from 537 context paragraphs in publicly accessible Tigrinya and Biology books. Through comprehensive analyses, we demonstrate that the TIGQA dataset requires skills beyond simple word matching, requiring both single-sentence and multiple-sentence inference abilities. We conduct experiments using state-of-the-art MRC methods, marking the first exploration of such models on TIGQA. Additionally, we estimate human performance on the dataset and juxtapose it with the results obtained from pre-trained models. The notable disparities between human performance and the best model performance underscore the potential for future enhancements to TIGQA through continued research. Our dataset is freely accessible via the provided link to encourage the research community to address the challenges in the Tigrinya MRC. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.

  • ISBN

    978-249381410-4

  • ISSN

  • e-ISSN

  • Number of pages

    20

  • Pages from-to

    16142-16161

  • Publisher name

    European Language Resources Association (ELRA)

  • Place of publication

  • Event location

    Torino, Italia

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article