A Hybrid Approach To Aspect Based Sentiment Analysis Using Transfer Learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3APZMXEQZR" target="_blank" >RIV/00216208:11320/25:PZMXEQZR - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195986331&partnerID=40&md5=ecac31a9ec7ba7bd8a5188be7c0e1d89" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195986331&partnerID=40&md5=ecac31a9ec7ba7bd8a5188be7c0e1d89</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Hybrid Approach To Aspect Based Sentiment Analysis Using Transfer Learning
Original language description
Aspect-Based Sentiment Analysis (ABSA) aims to identify terms or multiword expressions (MWEs) on which sentiments are expressed and the sentiment polarities associated with them. The development of supervised models has been at the forefront of research in this area. However, training these models requires the availability of manually annotated datasets which is both expensive and time-consuming. Furthermore, the available annotated datasets are tailored to a specific domain, language, and text type. In this work, we address this notable challenge in current state-of-the-art ABSA research. We propose a hybrid approach for Aspect Based Sentiment Analysis using transfer learning. The approach focuses on generating weakly-supervised annotations by exploiting the strengths of both large language models (LLM) and traditional syntactic dependencies. We utilise syntactic dependency structures of sentences to complement the annotations generated by LLMs, as they may overlook domain-specific aspect terms. Extensive experimentation on multiple datasets is performed to demonstrate the efficacy of our hybrid method for the tasks of aspect term extraction and aspect sentiment classification. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.
ISBN
978-249381410-4
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
647-658
Publisher name
European Language Resources Association (ELRA)
Place of publication
—
Event location
Torino, Italia
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—