All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

LLaMA-Based Models for Aspect-Based Sentiment Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972808" target="_blank" >RIV/49777513:23520/24:43972808 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2024.wassa-1.6/" target="_blank" >https://aclanthology.org/2024.wassa-1.6/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2024.wassa-1.6" target="_blank" >10.18653/v1/2024.wassa-1.6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    LLaMA-Based Models for Aspect-Based Sentiment Analysis

  • Original language description

    While large language models (LLMs) show promise for various tasks, their performance in compound aspect-based sentiment analysis (ABSA) tasks lags behind fine-tuned models. However, the potential of LLMs fine-tuned for ABSA remains unexplored. This paper examines the capabilities of open-source LLMs fine-tuned for ABSA, focusing on LLaMA-based models. We evaluate the performance across four tasks and eight English datasets, finding that the fine-tuned Orca 2 model surpasses state-of-the-art results in all tasks. However, all models struggle in zero-shot and few-shot scenarios compared to fully fine-tuned ones. Additionally, we conduct error analysis to identify challenges faced by fine-tuned models.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, &amp; Social Media Analysis

  • ISBN

    979-8-89176-156-8

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    63-70

  • Publisher name

    Association for Computational Linguistics

  • Place of publication

    Kerrville

  • Event location

    Bangkok, Thailand

  • Event date

    Aug 15, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article