All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Prompt-Based Approach for Czech Sentiment Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43970187" target="_blank" >RIV/49777513:23520/23:43970187 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.26615/978-954-452-092-2_118" target="_blank" >https://doi.org/10.26615/978-954-452-092-2_118</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.26615/978-954-452-092-2_118" target="_blank" >10.26615/978-954-452-092-2_118</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Prompt-Based Approach for Czech Sentiment Analysis

  • Original language description

    This paper introduces the first prompt-based methods for aspect-based sentiment analysis and sentiment classification in Czech. We employ the sequence-to-sequence models to solve the aspect-based tasks simultaneously and demonstrate the superiority of our prompt-based approach over traditional fine-tuning. In addition, we conduct zero-shot and few-shot learning experiments for sentiment classification and show that prompting yields significantly better results with limited training examples compared to traditional fine-tuning. We also demonstrate that pre-training on data from the target domain can lead to significant improvements in a zero-shot scenario.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Large Language Models for Natural Language Processing

  • ISBN

    978-954-452-092-2

  • ISSN

    1313-8502

  • e-ISSN

    2603-2813

  • Number of pages

    11

  • Pages from-to

    1110-1120

  • Publisher name

    INCOMA Ltd.

  • Place of publication

    Shoumen

  • Event location

    Varna

  • Event date

    Sep 4, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article