EurLexSummarization – A New Text Summarization Dataset on EU Legislation in 24 Languages with GPT Evaluation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AEPJJHCW5" target="_blank" >RIV/00216208:11320/25:EPJJHCW5 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2024.clib-1.22" target="_blank" >https://aclanthology.org/2024.clib-1.22</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
EurLexSummarization – A New Text Summarization Dataset on EU Legislation in 24 Languages with GPT Evaluation
Original language description
Legal documents are notorious for their length and complexity, making it challenging to extract crucial information efficiently. In this paper, we introduce a new dataset for legal text summarization, covering 24 languages. We not only present and analyze the dataset but also conduct experiments using various extractive techniques. We provide a comparison between these techniques and summaries generated by the state-of-the-art GPT models. The abstractive GPT approach outperforms the extractive TextRank approach in 8 languages, but produces slightly lower results in the remaining 16 languages. This research aims to advance the field of legal document summarization by addressing the need for accessible and comprehensive information retrieval from lengthy legal texts.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Sixth International Conference on Computational Linguistics in Bulgaria (CLIB 2024)
ISBN
—
ISSN
2367-5578
e-ISSN
—
Number of pages
8
Pages from-to
206-213
Publisher name
Department of Computational Linguistics, Institute for Bulgarian Language, Bulgarian Academy of Sciences
Place of publication
—
Event location
Sofia, Bulgaria
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—