Synthetic-Error Augmented Parsing of Swedish as a Second Language: Experiments with Word Order
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AQ45IXFCI" target="_blank" >RIV/00216208:11320/25:Q45IXFCI - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195172772&partnerID=40&md5=a144a8a927993680fe5bd6490c7760cf" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195172772&partnerID=40&md5=a144a8a927993680fe5bd6490c7760cf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Synthetic-Error Augmented Parsing of Swedish as a Second Language: Experiments with Word Order
Original language description
Ungrammatical text poses significant challenges for off-the-shelf dependency parsers. In this paper, we explore the effectiveness of using synthetic data to improve performance on essays written by learners of Swedish as a second language. Due to their relevance and ease of annotation, we restrict our initial experiments to word order errors. To do that, we build a corrupted version of the standard Swedish Universal Dependencies (UD) treebank Talbanken, mimicking the error patterns and frequency distributions observed in the Swedish Learner Language (SweLL) corpus. We then use the MaChAmp (Massive Choice, Ample tasks) toolkit to train an array of BERT-based dependency parsers, fine-tuning on different combinations of original and corrupted data. We evaluate the resulting models not only on their respective test sets but also, most importantly, on a smaller collection of sentence-correction pairs derived from SweLL. Results show small but significant performance improvements on the target domain, with minimal decline on normative data. © European Language Resources Association: CC BY-NC 4.0.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Jt. Workshop Multiword Expressions Univers. Depend., MWE-UD LREC-COLING - Workshop Proc.
ISBN
978-249381420-3
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
43-49
Publisher name
European Language Resources Association (ELRA)
Place of publication
—
Event location
Torino, Italia
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—