All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Overcoming Early Saturation on Low-Resource Languages in Multilingual Dependency Parsing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AQLM25E7J" target="_blank" >RIV/00216208:11320/25:QLM25E7J - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2024.mwe-1.10.pdf" target="_blank" >https://aclanthology.org/2024.mwe-1.10.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2021.iwpt-1.9" target="_blank" >10.18653/v1/2021.iwpt-1.9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Overcoming Early Saturation on Low-Resource Languages in Multilingual Dependency Parsing

  • Original language description

    UDify (Kondratyuk and Straka, 2019) is a multilingual and multi-task parser fine-tuned on mBERT that achieves remarkable performance in high-resource languages. However, the performance saturates early and decreases gradually in low-resource languages as training proceeds. This work applies a data augmentation method and conducts experiments on seven few-shot and four zero-shot languages. The unlabeled attachment scores were improved on the zero-shot languages dependency parsing tasks, with the average score rising from 67.1% to 68.7%. Meanwhile, dependency parsing tasks for high-resource languages and other tasks were hardly affected. Experimental results indicate the data augmentation method is effective for low-resource languages in a multilingual dependency parsing.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the Joint Workshop on Multiword Expressions and Universal Dependencies (MWE-UD)@ LREC-COLING 2024

  • ISBN

    978-2-493-81420-3

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    63-69

  • Publisher name

    ACL

  • Place of publication

  • Event location

    Torino, Italia

  • Event date

    Jan 1, 2025

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article