Advancing Sentiment Analysis in Serbian Literature: A Zero and Few–Shot Learning Approach Using the Mistral Model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ARZNJLRXM" target="_blank" >RIV/00216208:11320/25:RZNJLRXM - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2024.clib-1.5" target="_blank" >https://aclanthology.org/2024.clib-1.5</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Advancing Sentiment Analysis in Serbian Literature: A Zero and Few–Shot Learning Approach Using the Mistral Model
Original language description
This study presents the Sentiment Analysis of the Serbian old novels from the 1840-1920 period, employing the Mistral Large Language Model (LLM) to pioneer zero and few-shot learning techniques. The main approach innovates by devising research prompts that include guidance text for zero-shot classification and examples for few-shot learning, enabling the LLM to classify sentiments into positive, negative, or objective categories. This methodology aims to streamline sentiment analysis by limiting responses, thereby enhancing classification precision. Python, along with the Hugging Face Transformers and LangChain libraries, serves as our technological backbone, facilitating the creation and refinement of research prompts tailored for sentence-level sentiment analysis. The results of sentiment analysis in both scenarios, zero-shot and few-shot, have indicated that the zero-shot approach outperforms, achieving an accuracy of 68.2%.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Sixth International Conference on Computational Linguistics in Bulgaria (CLIB 2024)
ISBN
—
ISSN
2367-5578
e-ISSN
—
Number of pages
13
Pages from-to
58-70
Publisher name
Department of Computational Linguistics, Institute for Bulgarian Language, Bulgarian Academy of Sciences
Place of publication
—
Event location
Sofia, Bulgaria
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—