Multilingual Gradient Word-Order Typology from Universal Dependencies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AV8DZR4QY" target="_blank" >RIV/00216208:11320/25:V8DZR4QY - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185466454&partnerID=40&md5=a6182767792c85283e026159c55fd9a4" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185466454&partnerID=40&md5=a6182767792c85283e026159c55fd9a4</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Multilingual Gradient Word-Order Typology from Universal Dependencies
Original language description
While information from the field of linguistic typology has the potential to improve performance on NLP tasks, reliable typological data is a prerequisite. Existing typological databases, including WALS and Grambank, suffer from inconsistencies primarily caused by their categorical format. Furthermore, typological categorisations by definition differ significantly from the continuous nature of phenomena, as found in natural language corpora. In this paper, we introduce a new seed dataset made up of continuous-valued data, rather than categorical data, that can better reflect the variability of language. While this initial dataset focuses on word-order typology, we also present the methodology used to create the dataset, which can be easily adapted to generate data for a broader set of features and languages. © 2024 Association for Computational Linguistics.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
EACL - Conf. European Chapter Assoc. Comput. Linguist., Proc. Conf.
ISBN
979-889176089-9
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
42-49
Publisher name
Association for Computational Linguistics (ACL)
Place of publication
—
Event location
St. Julian's
Event date
Jan 1, 2025
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—