Finite range decomposition for families of gradient Gaussian measures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11620%2F13%3A10127314" target="_blank" >RIV/00216208:11620/13:10127314 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jfa.2012.10.006" target="_blank" >http://dx.doi.org/10.1016/j.jfa.2012.10.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2012.10.006" target="_blank" >10.1016/j.jfa.2012.10.006</a>
Alternative languages
Result language
angličtina
Original language name
Finite range decomposition for families of gradient Gaussian measures
Original language description
Let a family of gradient Gaussian vector fields on Z^d be given. We show the existence of a uniform finite range decomposition of the corresponding covariance operators, that is, the covariance operator can be written as a sum of covariance operators whose kernels are supported within cubes of diameters of the order L^k. In addition we prove natural regularity for the subcovariance operators and we obtain regularity bounds as we vary within the given family of gradient Gaussian measures.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
264
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
38
Pages from-to
169-206
UT code for WoS article
000312115100007
EID of the result in the Scopus database
—