All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sharp asymptotic for the chemical distance in long-range percolation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11620%2F19%3A10403974" target="_blank" >RIV/00216208:11620/19:10403974 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p7z4kD7eDq" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p7z4kD7eDq</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/rsa.20849" target="_blank" >10.1002/rsa.20849</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sharp asymptotic for the chemical distance in long-range percolation

  • Original language description

    We consider instances of long-range percolation on Zd and Rd, where points at distance r get connected by an edge with probability proportional to r(-s), for s is an element of (d,2d), and study the asymptotic of the graph-theoretical (a.k.a. chemical) distance D(x,y) between x and y in the limit as |x - y|-&gt;infinity. For the model on Zd we show that, in probability as |x|-&gt;infinity, the distance D(0,x) is squeezed between two positive multiples of (logr)Delta, where Delta:=1/log2(1/gamma) for gamma: = s/(2d). For the model on Rd we show that D(0,xr) is, in probability as r -&gt;infinity for any nonzero x is an element of Rd, asymptotic to phi(r)(logr)Delta for phi a positive, continuous (deterministic) function obeying phi(r(gamma)) = phi(r) for all r &gt; 1. The proof of the asymptotic scaling is based on a subadditive argument along a continuum of doubly-exponential sequences of scales. The results strengthen considerably the conclusions obtained earlier by the first author. Still, significant open questions remain.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA16-15238S" target="_blank" >GA16-15238S: Collective behavior of large stochastic systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Random Structures and Algorithms

  • ISSN

    1042-9832

  • e-ISSN

  • Volume of the periodical

    55

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

    560-583

  • UT code for WoS article

    000482128300003

  • EID of the result in the Scopus database

    2-s2.0-85063961606