All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Graph diameter in long-range percolation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F11%3A43878883" target="_blank" >RIV/60076658:12510/11:43878883 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1002/rsa.20349" target="_blank" >http://dx.doi.org/10.1002/rsa.20349</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/rsa.20349" target="_blank" >10.1002/rsa.20349</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Graph diameter in long-range percolation

  • Original language description

    We study the asymptotic growth of the diameter of a graph obtained by adding sparse "long" edges to a square box in Zd. We focus on the cases when an edge between x and y is added with probability decaying with the Euclidean distance as |x ? y|^{?s}+o(1)when |x ? y| ? oo. For s in the interval (d, 2d) we show that the graph diameter for the graph reduced to a box of side L scales like (log L)^{?+o(1)} where ?^{-1} := log_2(2d/s). In particular, the diameter grows about as fast as the typical graph distance between two vertices at distance L. We also show that a ball of radius r in the intrinsic metric on the (infinite) graph will roughly coincide with a ball of radius exp{r^{1/?}+o(1)} in the Euclidean metric.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Random Structures &amp; Algorithms

  • ISSN

    1042-9832

  • e-ISSN

  • Volume of the periodical

    39

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    210-227

  • UT code for WoS article

    000293751600003

  • EID of the result in the Scopus database