Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11620%2F20%3A10491821" target="_blank" >RIV/00216208:11620/20:10491821 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=92ixnNnRVG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=92ixnNnRVG</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00220-019-03589-z" target="_blank" >10.1007/s00220-019-03589-z</a>
Alternative languages
Result language
angličtina
Original language name
Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field
Original language description
Given any gamma>0 and for eta={eta(v)}(v is an element of Z2) denoting a sample of the two-dimensional discrete Gaussian free field on Z(2) pinned at the origin, we consider the random walk on Z(2) among random conductances where the conductance of edge (u, v) is given by e(gamma) (eta(u) + eta(v)). We show that, for almost every eta, this random walk is recurrent and that, with probability tending to 1 as T -> infinity, the return probability at time 2T decays as T-1+o(1). In addition, we prove a version of subdiffusive behavior by showing that the expected exit time from a ball of radius N scales as N psi(gamma)+o(1) with psi(gamma) > 2 for all gamma > 0. Our results rely on delicate control of the effective resistance for this random network. In particular, we show that the effective resistance between two vertices at Euclidean distance N behaves as N-o(1).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA16-15238S" target="_blank" >GA16-15238S: Collective behavior of large stochastic systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
1432-0916
Volume of the periodical
373
Issue of the periodical within the volume
1
Country of publishing house
VG - VIRGIN ISLANDS, BRITISH
Number of pages
62
Pages from-to
45-106
UT code for WoS article
000514316600002
EID of the result in the Scopus database
2-s2.0-85075875088