Stochastic gradient learning and instability: an example
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11640%2F16%3A00459193" target="_blank" >RIV/00216208:11640/16:00459193 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/S1365100514000583" target="_blank" >http://dx.doi.org/10.1017/S1365100514000583</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1365100514000583" target="_blank" >10.1017/S1365100514000583</a>
Alternative languages
Result language
angličtina
Original language name
Stochastic gradient learning and instability: an example
Original language description
In this paper, we investigate real-time behavior of constant-gain stochastic gradient (SG) learning, using the Phelps model of monetary policy as a testing ground. We find that whereas the self-confirming equilibrium is stable under the mean dynamics in a very large region, real-time learning diverges for all but the very smallest gain values. We employ a stochastic Lyapunov function approach to demonstrate that the SG mean dynamics is easily destabilized by the noise associated with real-time learning, because its Jacobian contains stable but very small eigenvalues. We also express caution on usage of perpetual learning algorithms with such small eigenvalues, as the real-time dynamics might diverge from the equilibrium that is stable under the mean dynamics.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
AH - Economics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Macroeconomic Dynamics
ISSN
1365-1005
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
777-790
UT code for WoS article
000374145600007
EID of the result in the Scopus database
2-s2.0-84955559951