All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Forecasting realized volatility using machine learning and mixed-frequency data (the case of the Russian stock market)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11640%2F21%3A00549124" target="_blank" >RIV/00216208:11640/21:00549124 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985998:_____/21:00549121

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Forecasting realized volatility using machine learning and mixed-frequency data (the case of the Russian stock market)

  • Original language description

    We assess the performance of selected machine learning algorithms (lasso, random forest, gradient boosting, and long short-term memory) in forecasting the daily realized volatility of returns of selected top stocks in the Russian stock market in comparison with a heterogeneous autoregressive realized volatility benchmark in 2018-2020. We seek to improve the predictive power of the models by including various economic indicators that carry information about future volatility. We find that lasso delivers a good combination of easy implementation and forecast precision. The other algorithms require fine-tuning and frequent re-training, otherwise they are likely to fail to outperform the benchmark often enough. Only the basic lagged log-RV values are significant explanatory variables in terms of the benchmark in-sample quality. Many economic indicators of mixed frequencies improve the predictive power of lasso though, including calendar and overnight effects, financial spillovers from local and global markets, and various macroeconomics indicators.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    50202 - Applied Economics, Econometrics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů