All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neural Morphological Tagging for Slavic: Strengths and Weaknesses

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A90101%2F21%3A10441927" target="_blank" >RIV/00216208:90101/21:10441927 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kccN-7C9u7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kccN-7C9u7</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neural Morphological Tagging for Slavic: Strengths and Weaknesses

  • Original language description

    The neural network tagger CLStM has been applied to the Old Russian Žitie Evfimija Velikogo (GIM, Chud. 20), a copy of the second half of the 14th century. The strengths of this tagger consist in its ability to automatically annotate an orthographically non-normalized text with dozens of pages within a few minutes, yielding a high accuracy with respect to part of speech and morphological features. Moreover, the tagger is capable of disambiguating case syncretism to a large extent, even in split constructions. Manual correction of the automatic tagging will result in a correctly tagged text considerably faster than when using a rule-based tagger or tagging completely manually. The weaknesses of the CLStM-tagger comprise certain examples of incorrect POS-tagging, sometimes incomplete or incorrect attribution of morphological categories to some parts of speech. Superscript letters and punctuation can pose special problems, normalization of punctuation will achieve better tagging results. The proportion of correct tags is higher when the token has been seen during the training process; unknown words (OOV) show a higher error rate. In the paper, we analyze the strengths and weaknesses of the tagger by providing specific examples. Furthermore, we demonstrate how to use automatically tagged, uncorrected data for quantitative analysis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scripta &amp; e-Scripta

  • ISSN

    1312-238X

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    20.11.2021

  • Country of publishing house

    BG - BULGARIA

  • Number of pages

    14

  • Pages from-to

    79-92

  • UT code for WoS article

  • EID of the result in the Scopus database