Impact of humic acid on the accumulation of metals by microalgae
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F18%3A00104103" target="_blank" >RIV/00216224:14110/18:00104103 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11356-018-1362-2" target="_blank" >http://dx.doi.org/10.1007/s11356-018-1362-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11356-018-1362-2" target="_blank" >10.1007/s11356-018-1362-2</a>
Alternative languages
Result language
angličtina
Original language name
Impact of humic acid on the accumulation of metals by microalgae
Original language description
Indirect impact of humic acid (HA) on metal accumulation and toxicity (Cd, Ni, Pb, and Hg; 100 mu M; 24 h of exposure) in Scenedesmus quadricauda was studied. Algae were pre-cultured on solid (10 and 100 mg HA/L) or in liquid media (1, 5, and 10 mg HA/L) over 30 days and then exposed to metals mentioned above. Accumulation of applied metals irrespective of pre-culture increased in the order Ni < Cd < Pb < Hg. Algae pre-cultured on solid HA-enriched media accumulated more Cd (+ 46% at 10 mg HA/L), Ni (+ 50 and + 81% at 10 and 100 mg HA/L, respectively), and Pb (+ 15% at 100 mg HA/L) but the impact on Hg amount was not detected. Potassium and calcium decreased in response to all metals (K strongly under Hg excess) and HA had negligible impact. Interestingly, fluorescence microscopy detection of reactive oxygen species/nitric oxide (ROS/NO) balance showed that HA pre-culture suppressed ROS signal and stimulated NO signal in response to Cd (indicating positive impact of HA) while ROS signal in Ni and Pb treatments rather increased but NO signal decreased as expected from elevated Ni and Pb accumulation. Hg had clearly the most toxic impact on the ROS/NO balance. Algae pre-cultured in liquid HA-enriched media showed significantly increased Ni accumulation only (+ 14% at a dose 10 mg HA/L). Present study for the first time showed that humic acid may indirectly affect accumulation of metals and that solid HA-enriched medium used for pre-culture is more suitable to increase accumulation of metals by algae.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30105 - Physiology (including cytology)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Environmental Science and Pollution Research
ISSN
0944-1344
e-ISSN
1614-7499
Volume of the periodical
25
Issue of the periodical within the volume
11
Country of publishing house
DE - GERMANY
Number of pages
7
Pages from-to
10792-10798
UT code for WoS article
000429810200056
EID of the result in the Scopus database
2-s2.0-85045344404