All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Effect of Uncoated SPIONs on hiPSC-Differentiated Endothelial Cells

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F19%3A00108522" target="_blank" >RIV/00216224:14110/19:00108522 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1422-0067/20/14/3536" target="_blank" >https://www.mdpi.com/1422-0067/20/14/3536</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ijms20143536" target="_blank" >10.3390/ijms20143536</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Effect of Uncoated SPIONs on hiPSC-Differentiated Endothelial Cells

  • Original language description

    Background: Endothelial progenitor cells (EPCs) were indicated in vascular repair, angiogenesis of ischemic organs, and inhibition of formation of initial hyperplasia. Differentiation of endothelial cells (ECs) from human induced pluripotent stem cells (hiPSC)-derived endothelial cells (hiPSC-ECs) provides an unlimited supply for clinical application. Furthermore, magnetic cell labelling offers an effective way of targeting and visualization of hiPSC-ECs and is the next step towards in vivo studies. Methods: ECs were differentiated from hiPSCs and labelled with uncoated superparamagnetic iron-oxide nanoparticles (uSPIONs). uSPION uptake was compared between hiPSC-ECs and mature ECs isolated from patients by software analysis of microscopy pictures after Prussian blue cell staining. The acute and long-term cytotoxic effects of uSPIONs were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay) and Annexin assay. Results: We showed, for the first time, uptake of uncoated SPIONs (uSPIONs) by hiPSC-ECs. In comparison with mature ECs of identical genetic background hiPSC-ECs showed lower uSPION uptake. However, all the studied endothelial cells were effectively labelled and showed magnetic properties even with low labelling concentration of uSPIONs. uSPIONs prepared by microwave plasma synthesis did not show any cytotoxicity nor impair endothelial properties. Conclusion: We show that hiPSC-ECs labelling with low concentration of uSPIONs is feasible and does not show any toxic effects in vitro, which is an important step towards animal studies.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30402 - Technologies involving the manipulation of cells, tissues, organs or the whole organism (assisted reproduction)

Result continuities

  • Project

    <a href="/en/project/NV16-31501A" target="_blank" >NV16-31501A: Engineering of epithelia: Cells and protocols for regenerative medicine</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Molecular Sciences

  • ISSN

    1661-6596

  • e-ISSN

    1422-0067

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    14

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

    1-16

  • UT code for WoS article

    000480449300160

  • EID of the result in the Scopus database

    2-s2.0-85071868615