All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Subarachnoid hemorrhage induced cellular and enzymatic changes in the choroid plexus

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F19%3A00112335" target="_blank" >RIV/00216224:14110/19:00112335 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Subarachnoid hemorrhage induced cellular and enzymatic changes in the choroid plexus

  • Original language description

    Introduction: The subarachnoid hemorrhage (SAH) is a specific form of hemorrhagic stroke. Choroid plexus (CP) of the brain ventricles forms the blood – cerebrospinal fluid barrier and is responsible for producing cerebrospinal fluid. The aim of our study was to describe the cellular and enzymatic changes after SAH or application of artificial cerebrospinal fluid (ACSF). Material and methods: SAH was induced by application non-heparinized autologous blood (SAH group) or ACSF (ACSF group) into the cisterna magna and animals were left to survive for 1, 3 and 7 days. The brain sections of naive, SAH and ACSF groups of animals were immunostained under identical conditions with anti-CD68 (ED1), anti-CD163 (ED2), anti-CCR7, anti-CD206, anti-CD3, anti MHC II, anti-Ki67, anti- heme-oxygenase-1 (HO-1), and anti-biliverdin reductase (BVR) antibodies. Immunohistochemical staining of HO-1 and BVR was confirmed by Western blot analysis. Results: The number of MHC II+ cells as well as ED1+ macrophages increased with duration after SAH or ACSF application while the number of ED2+ macrophages showed increased in all periods following SAH. Immunostaining of CCR7+ cells showed gradually decreased in both groups of animals. The number of CD206+ cells showed increased with duration after SAH and decreased after ACSF injection. CD3 immunostaining did not reveal T cells in the CP of any group of the animals. Ki-67 immunostaining showed gradually increased proliferation following SAH and decreased with duration after ACSF application. Increased expression of HO-1 and BVR was found in all periods following SAH. Conclusions: Our results demonstrate that CP responds with immune cellular and enzymatic changes at different time periods following the application of blood or ACSF. These findings indicate that not only blood degradation products but also increased intracranial pressure after SAH contributes to cellular and enzymatic changes in the CP following SAH.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    30106 - Anatomy and morphology (plant science to be 1.6)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů