All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Calcium-enriched biochar modulates cadmium uptake depending on external cadmium dose

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F22%3A00128358" target="_blank" >RIV/00216224:14110/22:00128358 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0269749122013926?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0269749122013926?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.envpol.2022.120178" target="_blank" >10.1016/j.envpol.2022.120178</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Calcium-enriched biochar modulates cadmium uptake depending on external cadmium dose

  • Original language description

    The impact of calcium-enriched biochar (BC, containing Ca, Al, Fe and P as dominant elements in the range of 6.9-1.3% with alkaline pH) obtained from sewage sludge (0.1 or 0.5% in the final soil) on cadmium-induced toxicity (final dose of 1.5 mg Cd/kg in control and 4.5 or 16.5 mg Cd/kg soil in low and high Cd treatment) was tested in medicinal plant Matricaria chamomilla. Low Cd dose had typically less negative impact than high Cd dose at the level of minerals and metabolites and the effect of BC doses often differed. Contrary to expectations, 0.5% BC with a high Cd dose increased Cd accumulation in plants about 2-fold. This was reflected in higher signals of reactive oxygen species, but especially the high dose of BC increased the amount of antioxidants (ascorbic acid and non-protein thiols), minerals and amino acids in shoots and/or roots and usually mitigated the negative effect of Cd. Surprisingly, the relationship between BC and soluble phenols was negative at high BC + high Cd dose, whereas the effect of Cd and BC on organic acids (mainly tartaric acid) differed in shoots and roots. Interestingly, BC alone applied to the control soil (1.5 mg total Cd/kg) reduced the amount of Cd in the plants by about 30%. PCA analyses confirmed that metabolic changes clearly distinguished the high Cd + high BC treatment from the corresponding Cd/BC treatments in both shoots and roots. Thus, it is clear that the effect of biochar depends not only on its dose but also on the amount of Cd in the soil, suggesting the use of Ca-rich biochar both for phytoremediation and safer food production.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30105 - Physiology (including cytology)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Environmental Pollution

  • ISSN

    0269-7491

  • e-ISSN

    1873-6424

  • Volume of the periodical

    313

  • Issue of the periodical within the volume

    November 2022

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    1-8

  • UT code for WoS article

    000862656900002

  • EID of the result in the Scopus database

    2-s2.0-85138433365