Bone marrow as multidimensional orbit oscillator after autologous bone marrow transplantation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F99%3A00002059" target="_blank" >RIV/00216224:14110/99:00002059 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Bone marrow as multidimensional orbit oscillator after autologous bone marrow transplantation
Original language description
The local renin-angiotensin system (RAS) in bone marrow is probably involved in the control of hematopoiesis. Earlier observations suggest the relationship between the frequency of sodium and potassium concentration changes in urine and bone marrow recovery after chemotherapy. The purpose of this study was to prove the relationship between sodium and potassium excretion changes in urine and granulocyte counts in peripheral blood after autologous bone marrow and peripheral blood stem cell transplantation. The correlation between amplitude maximum FFmax of F=d[Na]/d[K], where d[Na] and d[K] are changes of sodium and potassium excretions in 24 h, and granulocytes, recorded k days later, was found in 12 patients with autologous bone marrow transplantation(BMT) and/or PBSCT. In patients with successful engraftment, k ranged from 4 to 7 days. In the patient with unsuccessful BMT, k was 12 days. The results imply the interaction between systemic and bone marrow RAS.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
FD - Oncology and haematology
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
1999
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Stem Cells
ISSN
1066-5099
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—