All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Generating Genre-Specific Musical Transcriptions of Antonín Dvořák through a Variational Autoencoder

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F21%3A00123177" target="_blank" >RIV/00216224:14210/21:00123177 - isvavai.cz</a>

  • Result on the web

    <a href="https://digilib.phil.muni.cz/handle/11222.digilib/111872" target="_blank" >https://digilib.phil.muni.cz/handle/11222.digilib/111872</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5817/MB2021-2-5" target="_blank" >10.5817/MB2021-2-5</a>

Alternative languages

  • Result language

    čeština

  • Original language name

    Generování žánrově specifické hudební transkripce Antonína Dvořáka prostřednictvím variačního autoenkodéru

  • Original language description

    Apart from traditional deep learning tasks such as pattern recognition, stock price prediction, and machine translation, this method also finds practical application within algorithmic composition. This paper explores the use of a generative model based on unsupervised learning of a musical style from a pre-selected corpus and the subsequent prediction of samples from the estimated distribution. The model uses a Long Short-Term Memory neural network whose training data contains genre-specific melodies in symbolic representation.

  • Czech name

    Generování žánrově specifické hudební transkripce Antonína Dvořáka prostřednictvím variačního autoenkodéru

  • Czech description

    Apart from traditional deep learning tasks such as pattern recognition, stock price prediction, and machine translation, this method also finds practical application within algorithmic composition. This paper explores the use of a generative model based on unsupervised learning of a musical style from a pre-selected corpus and the subsequent prediction of samples from the estimated distribution. The model uses a Long Short-Term Memory neural network whose training data contains genre-specific melodies in symbolic representation.

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    60403 - Performing arts studies (Musicology, Theater science, Dramaturgy)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Musicologica Brunensia

  • ISSN

    1212-0391

  • e-ISSN

    2336-436X

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    13

  • Pages from-to

    49-61

  • UT code for WoS article

    000766749800005

  • EID of the result in the Scopus database

    2-s2.0-85128758860