All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning Running-time Prediction Models for Gene-Expression Analysis Workflows

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00239330" target="_blank" >RIV/68407700:21230/15:00239330 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning Running-time Prediction Models for Gene-Expression Analysis Workflows

  • Original language description

    One of the central issues for the efficient management of Scientific workflow applications is the prediction of tasks performance. This paper proposes a novel approach for constructing performance models for tasks in data-intensive scientific workflows in an autonomous way. Ensemble Machine Learning techniques are used to produce robust combined models with high predictive accuracy. Information derived from workflow systems and the characteristics and provenance of the data are exploited to guarantee the accuracy of the models. A gene-expression analysis workflow application was used as case study over homogeneous and heterogeneous computing environments. Experimental results evidence noticeable improvements while using ensemble models in comparison with single/standalone prediction models. Ensemble learning techniques made it possible to reduce the prediction error with respect to the strategies of a single-model with values ranging from 14.47% to 28.36% for the homogeneous case, and

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/7E13027" target="_blank" >7E13027: SUstainable PREdictive Maintenance for manufacturing Equipment</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE LATIN AMERICA TRANSACTIONS

  • ISSN

    1548-0992

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    3088-3095

  • UT code for WoS article

    000366502700040

  • EID of the result in the Scopus database